3.751 \(\int \frac{x^3 \sqrt{\tan ^{-1}(a x)}}{(c+a^2 c x^2)^{5/2}} \, dx\)

Optimal. Leaf size=215 \[ \frac{3 \sqrt{\frac{\pi }{2}} \sqrt{a^2 x^2+1} \text{FresnelC}\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{4 a^4 c^2 \sqrt{a^2 c x^2+c}}-\frac{\sqrt{\frac{\pi }{6}} \sqrt{a^2 x^2+1} \text{FresnelC}\left (\sqrt{\frac{6}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{12 a^4 c^2 \sqrt{a^2 c x^2+c}}-\frac{3 \sqrt{\tan ^{-1}(a x)}}{4 a^4 c^2 \sqrt{a^2 c x^2+c}}+\frac{\sqrt{a^2 x^2+1} \sqrt{\tan ^{-1}(a x)} \cos \left (3 \tan ^{-1}(a x)\right )}{12 a^4 c^2 \sqrt{a^2 c x^2+c}} \]

[Out]

(-3*Sqrt[ArcTan[a*x]])/(4*a^4*c^2*Sqrt[c + a^2*c*x^2]) + (Sqrt[1 + a^2*x^2]*Sqrt[ArcTan[a*x]]*Cos[3*ArcTan[a*x
]])/(12*a^4*c^2*Sqrt[c + a^2*c*x^2]) + (3*Sqrt[Pi/2]*Sqrt[1 + a^2*x^2]*FresnelC[Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]])
/(4*a^4*c^2*Sqrt[c + a^2*c*x^2]) - (Sqrt[Pi/6]*Sqrt[1 + a^2*x^2]*FresnelC[Sqrt[6/Pi]*Sqrt[ArcTan[a*x]]])/(12*a
^4*c^2*Sqrt[c + a^2*c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.347323, antiderivative size = 215, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 6, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {4971, 4970, 3312, 3296, 3304, 3352} \[ \frac{3 \sqrt{\frac{\pi }{2}} \sqrt{a^2 x^2+1} \text{FresnelC}\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{4 a^4 c^2 \sqrt{a^2 c x^2+c}}-\frac{\sqrt{\frac{\pi }{6}} \sqrt{a^2 x^2+1} \text{FresnelC}\left (\sqrt{\frac{6}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{12 a^4 c^2 \sqrt{a^2 c x^2+c}}-\frac{3 \sqrt{\tan ^{-1}(a x)}}{4 a^4 c^2 \sqrt{a^2 c x^2+c}}+\frac{\sqrt{a^2 x^2+1} \sqrt{\tan ^{-1}(a x)} \cos \left (3 \tan ^{-1}(a x)\right )}{12 a^4 c^2 \sqrt{a^2 c x^2+c}} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*Sqrt[ArcTan[a*x]])/(c + a^2*c*x^2)^(5/2),x]

[Out]

(-3*Sqrt[ArcTan[a*x]])/(4*a^4*c^2*Sqrt[c + a^2*c*x^2]) + (Sqrt[1 + a^2*x^2]*Sqrt[ArcTan[a*x]]*Cos[3*ArcTan[a*x
]])/(12*a^4*c^2*Sqrt[c + a^2*c*x^2]) + (3*Sqrt[Pi/2]*Sqrt[1 + a^2*x^2]*FresnelC[Sqrt[2/Pi]*Sqrt[ArcTan[a*x]]])
/(4*a^4*c^2*Sqrt[c + a^2*c*x^2]) - (Sqrt[Pi/6]*Sqrt[1 + a^2*x^2]*FresnelC[Sqrt[6/Pi]*Sqrt[ArcTan[a*x]]])/(12*a
^4*c^2*Sqrt[c + a^2*c*x^2])

Rule 4971

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[(d^(q +
1/2)*Sqrt[1 + c^2*x^2])/Sqrt[d + e*x^2], Int[x^m*(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b,
 c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] &&  !(IntegerQ[q] || GtQ[d, 0])

Rule 4970

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(m
 + 1), Subst[Int[((a + b*x)^p*Sin[x]^m)/Cos[x]^(m + 2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 3304

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[(f*x^2)/d],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{x^3 \sqrt{\tan ^{-1}(a x)}}{\left (c+a^2 c x^2\right )^{5/2}} \, dx &=\frac{\sqrt{1+a^2 x^2} \int \frac{x^3 \sqrt{\tan ^{-1}(a x)}}{\left (1+a^2 x^2\right )^{5/2}} \, dx}{c^2 \sqrt{c+a^2 c x^2}}\\ &=\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \sqrt{x} \sin ^3(x) \, dx,x,\tan ^{-1}(a x)\right )}{a^4 c^2 \sqrt{c+a^2 c x^2}}\\ &=\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \left (\frac{3}{4} \sqrt{x} \sin (x)-\frac{1}{4} \sqrt{x} \sin (3 x)\right ) \, dx,x,\tan ^{-1}(a x)\right )}{a^4 c^2 \sqrt{c+a^2 c x^2}}\\ &=-\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \sqrt{x} \sin (3 x) \, dx,x,\tan ^{-1}(a x)\right )}{4 a^4 c^2 \sqrt{c+a^2 c x^2}}+\frac{\left (3 \sqrt{1+a^2 x^2}\right ) \operatorname{Subst}\left (\int \sqrt{x} \sin (x) \, dx,x,\tan ^{-1}(a x)\right )}{4 a^4 c^2 \sqrt{c+a^2 c x^2}}\\ &=-\frac{3 \sqrt{\tan ^{-1}(a x)}}{4 a^4 c^2 \sqrt{c+a^2 c x^2}}+\frac{\sqrt{1+a^2 x^2} \sqrt{\tan ^{-1}(a x)} \cos \left (3 \tan ^{-1}(a x)\right )}{12 a^4 c^2 \sqrt{c+a^2 c x^2}}-\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \frac{\cos (3 x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{24 a^4 c^2 \sqrt{c+a^2 c x^2}}+\frac{\left (3 \sqrt{1+a^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\cos (x)}{\sqrt{x}} \, dx,x,\tan ^{-1}(a x)\right )}{8 a^4 c^2 \sqrt{c+a^2 c x^2}}\\ &=-\frac{3 \sqrt{\tan ^{-1}(a x)}}{4 a^4 c^2 \sqrt{c+a^2 c x^2}}+\frac{\sqrt{1+a^2 x^2} \sqrt{\tan ^{-1}(a x)} \cos \left (3 \tan ^{-1}(a x)\right )}{12 a^4 c^2 \sqrt{c+a^2 c x^2}}-\frac{\sqrt{1+a^2 x^2} \operatorname{Subst}\left (\int \cos \left (3 x^2\right ) \, dx,x,\sqrt{\tan ^{-1}(a x)}\right )}{12 a^4 c^2 \sqrt{c+a^2 c x^2}}+\frac{\left (3 \sqrt{1+a^2 x^2}\right ) \operatorname{Subst}\left (\int \cos \left (x^2\right ) \, dx,x,\sqrt{\tan ^{-1}(a x)}\right )}{4 a^4 c^2 \sqrt{c+a^2 c x^2}}\\ &=-\frac{3 \sqrt{\tan ^{-1}(a x)}}{4 a^4 c^2 \sqrt{c+a^2 c x^2}}+\frac{\sqrt{1+a^2 x^2} \sqrt{\tan ^{-1}(a x)} \cos \left (3 \tan ^{-1}(a x)\right )}{12 a^4 c^2 \sqrt{c+a^2 c x^2}}+\frac{3 \sqrt{\frac{\pi }{2}} \sqrt{1+a^2 x^2} C\left (\sqrt{\frac{2}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{4 a^4 c^2 \sqrt{c+a^2 c x^2}}-\frac{\sqrt{\frac{\pi }{6}} \sqrt{1+a^2 x^2} C\left (\sqrt{\frac{6}{\pi }} \sqrt{\tan ^{-1}(a x)}\right )}{12 a^4 c^2 \sqrt{c+a^2 c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.50442, size = 324, normalized size = 1.51 \[ \frac{i a^2 x^2 \sqrt{3 a^2 x^2+3} \sqrt{-i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},-3 i \tan ^{-1}(a x)\right )-i a^2 x^2 \sqrt{3 a^2 x^2+3} \sqrt{i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},3 i \tan ^{-1}(a x)\right )-27 i \left (a^2 x^2+1\right )^{3/2} \sqrt{-i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},-i \tan ^{-1}(a x)\right )+27 i \left (a^2 x^2+1\right )^{3/2} \sqrt{i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},i \tan ^{-1}(a x)\right )+i \sqrt{3 a^2 x^2+3} \sqrt{-i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},-3 i \tan ^{-1}(a x)\right )-i \sqrt{3 a^2 x^2+3} \sqrt{i \tan ^{-1}(a x)} \text{Gamma}\left (\frac{1}{2},3 i \tan ^{-1}(a x)\right )-144 a^2 x^2 \tan ^{-1}(a x)-96 \tan ^{-1}(a x)}{144 a^4 c^2 \left (a^2 x^2+1\right ) \sqrt{a^2 c x^2+c} \sqrt{\tan ^{-1}(a x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^3*Sqrt[ArcTan[a*x]])/(c + a^2*c*x^2)^(5/2),x]

[Out]

(-96*ArcTan[a*x] - 144*a^2*x^2*ArcTan[a*x] - (27*I)*(1 + a^2*x^2)^(3/2)*Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-I)
*ArcTan[a*x]] + (27*I)*(1 + a^2*x^2)^(3/2)*Sqrt[I*ArcTan[a*x]]*Gamma[1/2, I*ArcTan[a*x]] + I*Sqrt[3 + 3*a^2*x^
2]*Sqrt[(-I)*ArcTan[a*x]]*Gamma[1/2, (-3*I)*ArcTan[a*x]] + I*a^2*x^2*Sqrt[3 + 3*a^2*x^2]*Sqrt[(-I)*ArcTan[a*x]
]*Gamma[1/2, (-3*I)*ArcTan[a*x]] - I*Sqrt[3 + 3*a^2*x^2]*Sqrt[I*ArcTan[a*x]]*Gamma[1/2, (3*I)*ArcTan[a*x]] - I
*a^2*x^2*Sqrt[3 + 3*a^2*x^2]*Sqrt[I*ArcTan[a*x]]*Gamma[1/2, (3*I)*ArcTan[a*x]])/(144*a^4*c^2*(1 + a^2*x^2)*Sqr
t[c + a^2*c*x^2]*Sqrt[ArcTan[a*x]])

________________________________________________________________________________________

Maple [F]  time = 3.116, size = 0, normalized size = 0. \begin{align*} \int{{x}^{3}\sqrt{\arctan \left ( ax \right ) } \left ({a}^{2}c{x}^{2}+c \right ) ^{-{\frac{5}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*arctan(a*x)^(1/2)/(a^2*c*x^2+c)^(5/2),x)

[Out]

int(x^3*arctan(a*x)^(1/2)/(a^2*c*x^2+c)^(5/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)^(1/2)/(a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)^(1/2)/(a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*atan(a*x)**(1/2)/(a**2*c*x**2+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3} \sqrt{\arctan \left (a x\right )}}{{\left (a^{2} c x^{2} + c\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)^(1/2)/(a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate(x^3*sqrt(arctan(a*x))/(a^2*c*x^2 + c)^(5/2), x)